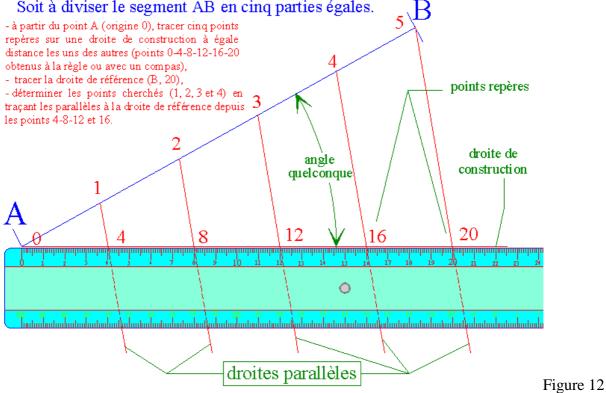
V. Constructions géométriques de base


Diviser un segment en plusieurs parties égales ou proportionnelles à des valeurs imposées, tracer la perpendiculaire à une droite passant par un point donné, tracer la médiatrice d'un segment ou la bissectrice d'un angle, dessiner le cercle inscrit à un triangle ou le cercle circonscrit, retrouver le centre d'un cercle, tracer la tangente à un cercle passant par un point donné ou la tangente en un point de celui-ci, sont parmi les constructions géométriques qui se posent régulièrement au dessinateur en dessin manuel ou en CAO/DAO. Les paragraphes suivants donnent les principales méthodes de construction.

1. Division d'un segment en plusieurs parties

a) Cas1: division d'un segment (AB) en n parties égales (5)

Dessin manuel, étapes de construction :

- à partir du point A (origine 0), tracer n points repères (5) sur une droite de construction, à égale distance les uns des autres (points 0, 4, 8, 12, 16, 20 de la figure obtenue à la règle ou au compas),
- tracer la droite référence (B, 20),
- déterminer les points cherchés (1, 2, 3, 4...) en traçant les parallèles à la droite (B, 20) passant par les points 4, 8, 12, 16 et coupant AB.

CAO/DAO: certains logiciels proposent une ou plusieurs commandes permettant de diviser les lignes. Par exemple sous "Autocad", la **commande "Diviser"** permet de diviser un segment en n parties égales. Après appel de la commande, menu dessin ou commande Windows "diviser", celle-ci demande dans l'ordre:

Choix de l'objet à diviser : Bloc / < Nombre de segments > :

Choix Remarque : l'objet à diviser peut être une ligne, un arc, un cercle, une polyligne, etc. Le nombre d'intervalles souhaité est à indiquer au clavier. Après "Entrée", la commande crée sur l'objet un réseau de points situés à intervalles réguliers et utilisables notamment par la commande **"nodal"** du menu "d'accrochage aux objets". L'option bloc permet de remplacer les points par des blocs préalablement définis par le dessinateur et orientables dans le dessin.

Commande "mesurer": variante de la précédente, cette commande permet de créer, sur un objet sélectionné, des intervalles réguliers dont la longueur est à préciser au clavier. L'option bloc est également disponible.

Choix de l'objet à mesurer :

Bloc / < Longueur du segment > :

b) Cas 2 : division d'un segment en parties proportionnelles à des valeurs imposées

Soit à diviser un segment AB donné en trois parties proportionnelles à 3, 5 et 7.

Dessin manuel, étapes de construction :

Même principe que pour la division en parties égales, sauf que les distances entre les points de référence (0, 3, 8 et 15) ont des distances de 30 mm, 50 mm et 70 mm afin de vérifier les proportionnalités imposées de 3, 5 et 7.

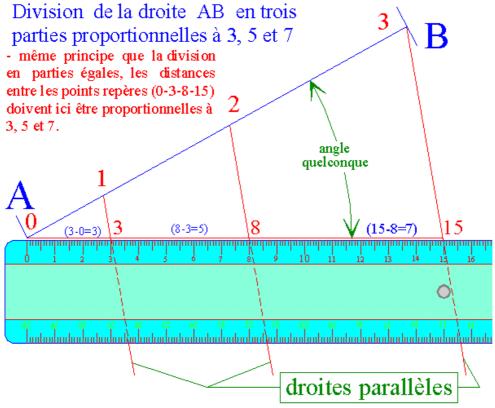
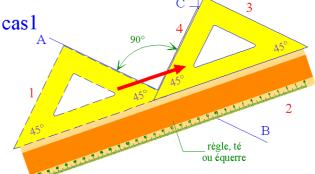


Figure 14

2. Tracé de la perpendiculaire à une ligne passant par un point imposé

PJ

a) Perpendiculaire à une ligne "AB" passant par un point "C" non situé sur la ligne


Cas 1 : méthode utilisant les deux côtés de l'angle droit d'une équerre à 45°

Etapes de construction :

- placer le petit côté de l'équerre à 45° contre la droite AB,
- mettre la règle (ou té ou autre équerre) contre le grand côté de l'équerre à 45°,
- la règle étant maintenue fixe par la main libre, faire glisser l'équerre à 45° jusqu'au point C,
- avec l'autre petit côté de l'équerre tracer la droite cherchée. Figure 15

Tracé de la perpendiculaire à une ligne (AB) passant par un point (C) 1 - placer un petit côté de l'équerre à 45° contre la droite AB, 2 - mettre la règle (ou té ou autre équerre) contre le grand côté de l'équerre à 45°,

- 3 la règle maintenue fixe, faire glisser l'équerre jusqu'au point C
- 4 avec l'autre petit côté de l'équerre tracer la droite cherchée

Cas 2 : méthode utilisant le compas et les propriétés du triangle rectangle

Tracer dans l'ordre:

- une droite CD quelconque coupant la droite AB en D,
- le centre E de CD,
- le cercle de diamètre CD, de centre E et de rayon ED,
- le point d'intersection F entre le cercle et AB,
- la droite cherchée FC, perpendiculaire à AB.

tracer dans l'ordre:

1- droite CD quelconque

Remarque : le triangle CFD est un triangle rectangle dont CD est l'hypoténuse.

Tracé de la perpendiculaire à une ligne (AB) passant par un point (C)

2- centre E de CD 3- cercle de diamètre CD et de rayon ED 4- point F, droite cherchée FC Е В

cas 2

tracer dans l'ordre

- 1- arc de cercle de centre C, points D et E
- 2- are de cercle centre D, rayon R
- 3- are de cercle centre E, rayon R
- 4- point F et droite cherchée

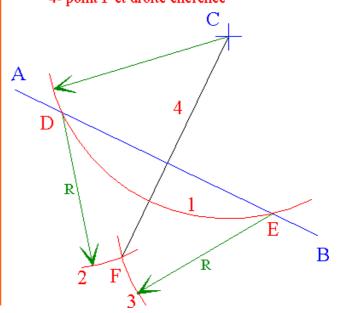
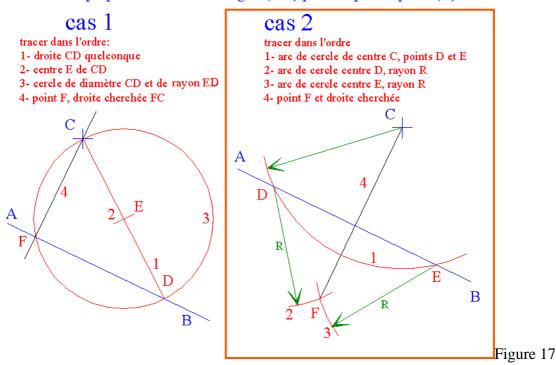


Figure 16

Nom


Cas 3 : méthode utilisant le compas et les propriétés de la médiatrice

Tracer dans l'ordre:

- un arc de cercle de centre C coupant AB et D et E,
- un arc de cercle de centre D et de rayon R sensiblement plus petit que DE,
- un arc de cercle de centre E et de même rayon R que précédemment,
- le point F d'intersection des deux arcs,
- la droite CF perpendiculaire à AB.

Remarque: CF est la médiatrice du segment DE.

Tracé de la perpendiculaire à une ligne (AB) passant par un point (C)

CAO/DAO: des combinaisons de commandes sont souvent nécessaires pour réussir ces tracés. Exemple: une commande "ligne" avec une commande d'assistance aux tracés comme la commande "perpendiculaire" du menu "accrochage aux objets" d'Autocad.

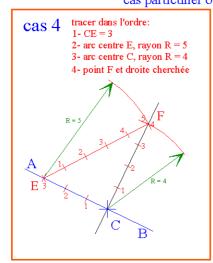
PJ

PJ

b) Perpendiculaire à une ligne "AB" passant par un point "C" situé sur cette ligne

Cas 1 : utilisation de l'équerre seule

Placer l'un des côtés de l'angle droit d'une équerre à 45° contre la droite AB, le coin de l'équerre c entré sur C, tracer la droite cherchée avec l'autre côté de l'angle droit.


Cas 2 : avec le compas et les propriétés du théorème de Pythagore

AB est la droite initiale et C un point de cette ligne. La perpendiculaire en C à AB est obtenue en traçant dans l'ordre :

- un segment CE de longueur 3,
- un arc de centre E et de rayon égal à 5,
- un arc de centre C et de rayon égal à 4,
- le point d'intersection F entre les deux arcs précédents.

Erreur ! Signet non défini. Remarque : la méthode exploite le théorème de Pythagore ($EF^2 = EC^2 + FC^2$)

Tracé de la perpendiculaire à une ligne (AB) passant par un point (C) cas particulier ou C est sur AB

tracer dans l'ordre:

1- points D et E sur AB tels que
CD = CE (compas..),

2- arc 2 centre D, rayon R

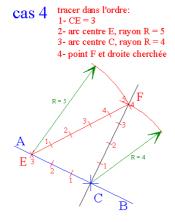
3- arc 3 de centre E, rayon R

4- point F et droite cherchée

Figure 18

В

Cas 3 : avec le compas et les propriétés de la médiatrice


Tracer dans l'ordre:

- les points D et E sur AB tels que CD = CE,
- l'arc (2) de centre D et de rayon R (sensiblement plus court que DE),
- l'arc (3) de centre E et ayant même rayon R que précédemment,
- le point d'intersection F des deux arcs précédents,
- la droite CF perpendiculaire à AB.

Remarque: CF est la médiatrice du segment DE.

Tracé de la perpendiculaire à une ligne (AB) passant par un point (C)

cas particulier ou C est sur AB

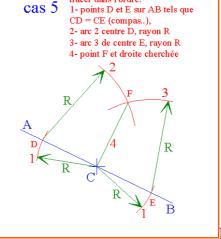
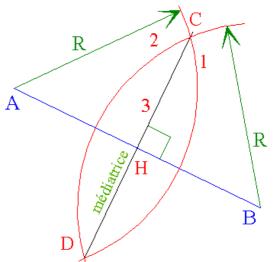


Figure 19

PJ

3. Tracé de la médiatrice (CD) d'un segment de droite donné (AB)


Propriétés : CD est perpendiculaire à AB et le coupe en deux parties égales "AH = HB".

Dessin manuel: tracer dans l'ordre:

- l'arc AC (1) de centre A et de rayon R (sensiblement plus petit que AB),
- l'arc BC (2) de centre B et de même rayon R,
- les points d'intersection C et D de chaque côté de AB,
- la médiatrice CD cherchée.

Figure 20

Tracé de la médiatrice (CD) de la droite AB

<u>Propriétés</u>: CD est perpendiculaire à AB et la coupe en 2 parties égales (AH = HB). Tracer dans l'ordre:

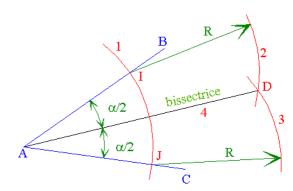
1- arc AC ou 1, centre A, rayon R,

2- arc BC ou 2, centre B, rayon R,

3- la droite CD ou médiatrice cherchée.

4. Tracé de la bissectrice (AD) d'un angle BAC

Propriétés : la bissectrice coupe l'angle en deux parties égales.


Dessin manuel : ordre des tracés :

- arc (1) de centre A et de rayon quelconque.
- arc (2) de centre I et de rayon R,
- arc (3) de centre J et de même rayon R,
- la bissectrice AD.

Remarque: angle DAB = angle DAC. Figure

21

Tracé de la bissectrice (AD) d'un angle BAC

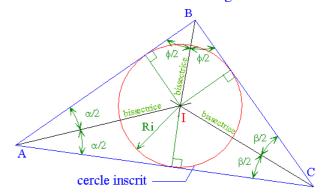
<u>Propriétés</u>: la bissectrice coupe l'angle en 2 parties égales (angle DAB = angle DAC). Ordre des tracés:

1- arc 1, centre A, rayon quelconque,

2- arc 2 ou ID, centre I, rayon R,

3- arc 3 ou JD, centre J, ray on R,

4- médiatrice AD.


CAO/DAO : la commande "droite" du paragraphe III avec l'option "bissectrice" permet de réaliser directement ce tracé.

5. Tracé du cercle inscrit à un triangle

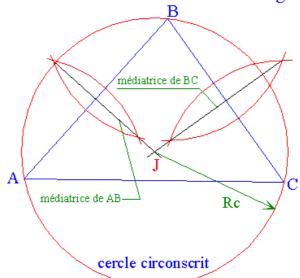
Propriétés : le cercle inscrit est tangent aux trois côtés du triangle. Son centre est situé à l'intersection des bissectrices des trois angles du triangle.

Dessin manuel: l'intersection de deux bissectrices suffit pour déterminer le centre "I" du cercle inscrit. Le rayon est égal à la longueur de l'une des perpendiculaires entre le centre I et l'un des trois côtés. Figure 22

Tracé du cercle inscrit à un triangle

<u>propriétes</u>: le cercle inscrit est tangent aux 3 cotés du triangle. Son centre est situé à l'intersection des bissectrices des 3 angles.

Construction: l'intersection de 2 bissectrices suffit pour déterminer le centre. Le rayon est égal à la longueur de l'une perpendiculaire à l'un des 3 cotés.


CAO/DAO : la commande "cercle" du paragraphe VI avec l'option "par trois points de tangence" permet de tracer directement le cercle inscrit après pointage des trois côtés du triangle.

6. Tracé du cercle circonscrit à un triangle

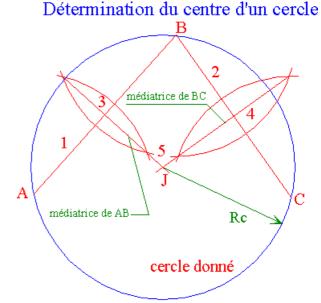
Propriétés : le cercle circonscrit passe par les trois sommets du triangle. Son centre est situé à l'intersection des médiatrices des trois côtés.

Dessin manuel : l'intersection de deux médiatrices suffit pour obtenir le centre du cercle.

Tracé du cercle circonscrit à un triangle

<u>propriétés</u>: le cercle circonscrit passe par les 3 sommets du triangle. Son centre est situé à l'intersection des médiatrices des 3 cotés. Construction: l'intersection de 2 médiatrices suffit pour obtenir le centre du cercle.

Figure 23


CAO/DAO: la commande "cercle" du paragraphe VI avec l'option "par trois points" permet de tracer directement le cercle circonscrit après pointage des trois sommets du triangle.

7. Détermination du centre d'un cercle

Dessin manuel : avec le compas et par utilisation des médiatrices, tracer dans l'ordre :

- les droites AB et BC quelconques,
- la médiatrice de AB,
- la médiatrice de BC,
- le point d'intersection J des deux médiatrices,
- J est le centre du cercle.

Figure 24

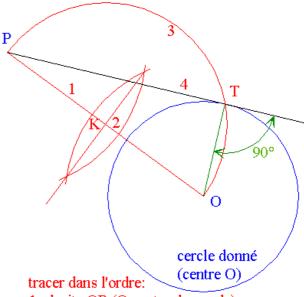
Tracer dans l'ordre:

1+2- les points A, B et C sur le cercle ou les droites AB et BC,

- 3- la médiatrice de AB,
- 4- la médiatrice de BC,
- 5- le centre du cercle à l'intersection J.

CAO/DAO: le repérage du centre d'un cercle est généralement réalisé à partir des commandes d'aides au tracé comme la commande "centre" du menu "accrochage aux objets" d'Autocad.

8. Tangente à un cercle passant par un point P


Dessin manuel : l'objectif étant la détermination du point de tangence T, tracer dans l'ordre :

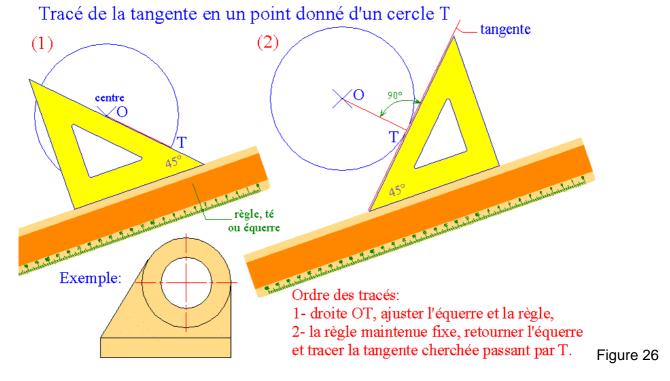
- la droite OP (O est le centre connu du cercle),
- le milieu K de OP,
- le demi-cercle de centre K et de rayon KP,
- le point d'intersection T entre le cercle et le demicercle,
- T est le point de tangence cherché.

Remarque : la droite OT est perpendiculaire à TP.

Figure 25

Tracer la tangente à un cercle passant par un point P

1- droite OP (O centre du cercle)


- 2- milieu K de OP
- 3- demi-cercle KP
- 4 point de tangence à l'intersection T

CAO/DAO: la commande "ligne" du paragraphe III avec l'option "tangente" d'un menu d'assistance ("accrochage au objet" d'Autocad...) permet de réaliser ce tracé sans difficulté. Il y a deux tangentes possibles, le choix de l'une ou l'autre dépendra de la position de pointage du cercle.

9. Tangente au point T appartenant à un cercle de centre O

Dessin manuel : avec le té (ou une règle) et une équerre à 45°, tr acer dans l'ordre :

- la droite OT ("tracé est facultatif"),
- positionner le grand côté (ou l'hypoténuse) de l'équerre à 45° contre OT,
- glisser le dessus de la règle ou du té contre le dessous de l'équerre,
- la règle étant maintenue immobile par la main libre, retourner l'équerre,
- faire glisser l'équerre (grand côté) sur le dessus de la règle jusqu'au point T,
- tracer la tangente en T.

